a genetic algorithm approach for problem

نویسندگان

e mehdizadeh

r tavakkoli-moghaddam

چکیده

in this paper, a genetic algorithm is presented for an identical parallel-machine scheduling problem with family setup time that minimizes the total weighted flow time ( ). no set-up is necessary between jobs belonging to the same family. a set-up must be scheduled when switching from the processing of family i jobs to those of another family j, i  j, the duration of this set-up being the sequence-independent set-up time sj for family j. this problem is shown to be np-hard in the strong sense and obtaining an optimal solution for the large-sized problems in reasonable computational time is extremely difficult. further, it is computationally evaluated the performance of the proposed genetic algorithm solutions obtained using a mixed integer programming (mip) with the lingo 8.0 software.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic algorithm approach for problem

In this paper, a genetic algorithm is presented for an identical parallel-machine scheduling problem with family setup time that minimizes the total weighted flow time ( ). No set-up is necessary between jobs belonging to the same family. A set-up must be scheduled when switching from the processing of family i jobs to those of another family j, i  j, the duration of this set-up being the sequ...

متن کامل

A genetic algorithm approach for a dynamic cell formation problem considering machine breakdown and buffer storage

Cell formation problem mainly address how machines should be grouped and parts be processed in cells. In dynamic environments, product mix and demand change in each period of the planning horizon. Incorporating such assumption in the model increases flexibility of the system to meet customer’s requirements. In this model, to ensure the reliability of the system in presence of unreliable machine...

متن کامل

A Genetic Algorithm Developed for a Supply Chain Scheduling Problem

This paper concentrates on the minimization of total tardiness and earliness of orders in an integrated production and transportation scheduling problem in a two-stage supply chain. Moreover, several constraints are also considered, including time windows due dates, and suppliers and vehicles availability times. After presenting the mathematical model of the problem, a developed version of GA c...

متن کامل

A Memtic genetic algorithm for a redundancy allocation problem

Abstract In general redundancy allocation problems the redundancy strategy for each subsystem is predetermined. Tavakkoli- Moghaddam presented a series-parallel redundancy allocation problem with mixing components (RAPMC) in which the redundancy strategy can be chosen for individual subsystems. In this paper, we present a bi-objective redundancy allocation when the redundancy strategies for...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A genetic algorithm approach for open-pit mine production scheduling

In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of industrial engineering, international

ISSN 1735-5702

دوره 7

شماره 13 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023